The Progressive Approach of Linear Substitution Cipher for a Singular Matrices Key Using AI Tools

Author:

Kuril Devendra1ORCID,Dhawan Manoj2ORCID

Affiliation:

1. SVVV, Indore, India

2. Avantika University, Ujjain, India

Abstract

The linear substitution cipher is renowned for its secure key encryption capabilities. Despite its strengths, a significant limitation lies in the necessity of a deciphering key to convert ciphered text to plain text, rendering it unsuitable for cryptosystems (cryptosys) handling non-readable text, such as text code. Previous analyses have underscored the inadequacy of conventional linear substitution cipher techniques in the absence of AI tools, as they remain susceptible to numerous vulnerabilities, particularly in the identification of plaintext, matrix calculation systems, and human error. However, advancements in algorithmic refinement have endowed these methods with enhanced resistance to known plaintext attacks, facilitated by AI systems because this system can change requirements at the time of execution algorithm. This chapter endeavors to explore and evaluate the efficacy of these advanced linear substitution cipher variants in overcoming inherent vulnerabilities and bolstering cryptographic robustness.

Publisher

IGI Global

Reference15 articles.

1. Hariharan, P. R., & Thooyamani, K. P. Dr., (2017). Various Schemes for Database Encryption - A Survey. International Journal of Applied Engineering Research, 8763-8767.

2. A Power Reduction Technique Based on Linear Transformations for Block Ciphers

3. Kingslin, S., & Saranya, R. (2018). Evaluative Study on Substitution and Transposition Ciphers. IJCRT, 6(1).

4. Krishna & Ramarathnam, N. (2019). Classifying Classic Ciphers using Machine Learning. Master's Projects. https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1699&context=etd_projects

5. Advanced Method of Polygraphic Substitution Cipher Using an Automation System for Non‐Invertible Matrices Key

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3