A New Approach for Detecting Malware Using a Convolutional Autoencoder With Kernel Density Estimation

Author:

Om Kumar C. U.1ORCID,Nihal Mubeen K. H.1,Krithiga R.1,Sudhakaran G.1ORCID,Chaubey Nirbhay Kumar2ORCID

Affiliation:

1. Vellore Institute of Technology, Chennai, India

2. Ganpat University, Gujarat, India

Abstract

The increasing use of the internet and digital devices has led to an exponential growth in cyber-attacks, with malware being one of the most prevalent forms of cybercrime. Modern-day malware is becoming more sophisticated and evasive, using various techniques such as obfuscation, encryption, and code injection to evade detection. To combat this problem, this study proposes a new approach for detecting malware using a convolutional autoencoder with kernel density estimation (KDE). This model uses the autoencoder's encoder to compute KDE and combines reconstruction error with KDE for malware detection. Tested on the malimg dataset, it achieves 98.3% accuracy, comparable to other autoencoder models. This study demonstrates the potential of combining convolutional autoencoder with KDE for detecting modern sophisticated malware, evaluated against existing models using accuracy and precision metrics.

Publisher

IGI Global

Reference22 articles.

1. Deep Autoencoders and Feedforward Networks Based on a New Regularization for Anomaly Detection

2. On the Resilience of Shallow Machine Learning Classification in Image-based Malware Detection

3. De PaolaA. (2018). Malware Detection through Low-level Features and Stacked Denoising Autoencoders. ITASEC.

4. Hardy, W. (2016). DL4MD: A deep learning framework for intelligent malware detection. Proceedings of the International Conference on Data Science (ICDATA). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).

5. A Malware Detection Approach Using Malware Images and Autoencoders

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3