Prediction of Attention-Deficit and Hyperactivity Disorder in Online Learning

Author:

Patil Pooja Yogesh1,Sarode Bhargavi Shirish1,Chavan Pallavi Vijay1ORCID,Goje Nitin S.2,Williams Idongesit3ORCID

Affiliation:

1. D.Y. Patil University, India

2. Webster University, Uzbekistan

3. Southern Denmark University, Denmark

Abstract

The rise of online learning poses challenges in identifying and supporting students with cognitive disorders, notably ADHD. This neurodevelopmental disorder, diagnosed in childhood, impacts academic performance. With the prevalence of online education, early detection and intervention for ADHD are crucial. Predictive techniques using digital traces, behavioral patterns, and physiological data during online sessions are studied. Machine and deep learning models, including supervised and unsupervised approaches, identify ADHD-related behaviors. Natural language processing analyzes textual interactions for signs of inattention or hyperactivity. Eye-tracking and physiological sensors reveal attention levels during online activities. Though offline classrooms allow direct interaction, these techniques enable timely interventions, enhancing ADHD students' experiences in the digital learning era. Further research to refine and address challenges will contribute to a more inclusive and effective online learning environment.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3