Digital Twins in Human Activity Prediction on Gait Using Extreme Gradient Boosting Local Binary Pattern

Author:

Singh Thakur Monika1,Lippert Kari2ORCID

Affiliation:

1. Koneru Lakshmaiah Education Foundation, India

2. University of South Alabama, USA

Abstract

In recent years, there has been a growing interest in the development of digital twins. Digital twins have become a valuable tool in various fields, including healthcare, for predicting and analyzing human activity patterns. By utilizing the extension extreme gradient (XG) boosting local binary pattern (LBP) algorithm, digital twins can accurately predict human gait and provide valuable insights for healthcare professionals. In this chapter, the authors propose an innovative approach to predict human activities based on gait patterns using an extended XG boost model, enhanced with local binary patterns for feature extraction. The integration of extended XG boost, a highly efficient and interpretable machine learning algorithm, with local binary patterns, a robust technique for texture analysis, enables the extraction of discriminative features from gait data. The utilization of digital twins, specifically with the extension XG BOOST LBP algorithm, has proven to be a valuable tool in predicting and analyzing human gait.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3