A Smart Healthcare Diabetes Prediction System Using Ensemble of Classifiers

Author:

Yadav Ayush1ORCID,Amma N. G. Bhuvaneswari1ORCID

Affiliation:

1. Vellore Institute of Technology, Chennai, India

Abstract

Throughout the world, diabetes is a life-threatening disease. This research study aims to develop a smart healthcare machine-learning model for diabetes prediction. The dataset is pre-processed to handle missing data and outliers, and feature selection techniques are used to identify the most relevant variables for the model. An ensemble of classifiers is built by combining logistic regression, XGBoost, random forest, and support vector machine. The performance of the proposed model is assessed using metrics such as accuracy, precision, recall, and F1-score. The results show that the random forest algorithm outperforms other models in terms of accuracy, precision, recall, and F1 score. The model achieves an accuracy of 85%, indicating that it can correctly predict diabetes in 85% of cases. In conclusion, this study demonstrates the feasibility of using machine learning models for diabetes prediction based on patient data. The model can be further improved by incorporating more extensive and diverse datasets and exploring more advanced machine-learning techniques.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3