Enhancing Digital Twins With Wireless Sensor Networks

Author:

Akila T.1,Bilgaiyan Purti2,Subramaniam Sangeetha3ORCID,Venkateswaran R.4ORCID

Affiliation:

1. Mahendra College of Engineering, India

2. United World School of Computational Intelligence, Karnavati University, India

3. Kongunadu College of Engineering and Technology, India

4. University of Technology and Applied Sciences, Salalah, Oman

Abstract

This chapter explores the integration of digital twin technology (DTT) and artificial intelligence (AI) in advancing underwater wireless sensor networks (UWSN). The problem statement revolves around the challenges faced by UWSN in terms of data quality, real-time decision-making, and energy efficiency. Traditional UWSN systems lack the ability to adapt swiftly to changing underwater conditions and ensure reliable data transmission. This study addresses these challenges by proposing a novel approach that leverages DTT and AI for enhanced UWSN performance. Its methodology involves the design and implementation of a DTT-AI-based UWSN framework. DTT replicates the physical underwater environment, providing a virtual representation that continuously updates in real-time. AI algorithms process data from UWSN sensors within this digital twin, enabling intelligent decision-making and predictive analytics.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3