Privacy-Preserving Machine Learning Cryptographic Techniques for Secure Data Analysis

Author:

Alauthman Mohammad1ORCID,Al-Qerem Ahmad2ORCID,Almomani Ammar3ORCID,Aldweesh Amjad4ORCID,Aburub Faisal5,Alkasassbeh Mouhammd6

Affiliation:

1. Petra University, Jordan

2. Zarqa University, Jordan

3. Skyline University College, UAE

4. Shaqra University, Saudi Arabia

5. University of Petra, Jordan

6. Princess Summaya University for Technology, Jordan

Abstract

Machine learning models rely on sensitive personal data, creating tension between utility and privacy. Privacy-preserving machine learning aims to enable secure data analysis through cryptographic techniques. This chapter provides an overview of fundamental cryptographic primitives including secure multiparty computation, homomorphic encryption, differential privacy, and federated learning. The authors explain how these techniques allow collaborative model training and prediction without compromising data confidentiality. Example real-world applications in sectors like healthcare, finance, and public policy are presented. Hybrid approaches combining complementary cryptographic tools are outlined to improve efficiency, accuracy, and privacy. Finally, the authors examine emerging directions such as post-quantum security, trusted execution environments, and on-device learning.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3