Secure Key Generation and Management Using Generative Adversarial Networks

Author:

Al Khaldy Mohammad1ORCID,Aburub Faisal2,Al-Qerem Ahmad3ORCID,Aldweesh Amjad4ORCID,Almomani Ammar5ORCID

Affiliation:

1. Department of Business Intelligence and Data Analytics, University of Petra, Amman, Jordan

2. University of Petra, Jordan

3. Zarqa University, Jordan

4. Shaqra University, Saudi Arabia

5. Skyline University College, UAE

Abstract

The generation and control of cryptographic keys are the most important things when it comes to the security and integrity of encrypted data. The traditional key generation methods including pseudorandom number generation often fail to generate truly random values and become predictable as well. This chapter explores the potential of generative adversarial networks (GANs) for secure key generation and management. GANs, a very powerful deep learning architecture, can produce the statistical properties of true randomness utilizing adversarial training, thus generating key sequences that are random and unpredictable. The chapter proceeds with the essence of cryptographic key generation, key management lifecycle, GAN architectures, training strategies, and evaluation techniques for key randomness and security. Furthermore, it explores how this approach is applied for key distribution, synchronization, revocation, and updates, and these issues are analyzed, with a special focus on scalability and performance.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3