An Enhanced Taxi Demand Perception System Leveraging Fusion and Automated Sensor Integration

Author:

Kelagadi Hemantaraj M.1,Billady Ravikiran Kamath2ORCID,Shanmugasundaram Ravivarman3ORCID,Thilak K. Raj4,Karthick L5ORCID,Patil Narhar K.6

Affiliation:

1. KLE Technological University, India

2. NITTE University, India

3. Vardhaman College of Engineering, Hyderabad, India

4. Sri Eshwar College of Engineering, Coimbatore, India

5. Department of Mechanical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, India

6. Dr. Vishwanath Karad MIT World Peace University, India

Abstract

Academia has recently focused on taxi demand prediction, seeing its potential in intellectual transference systems. Older methodologies often overlooked nuanced journey conditions, mainly forecasting from origin locations. This approach lacks efficiency, disregarding demand dynamics between origins and destinations. The research introduces taxi origin-destination demand prediction, leveraging mechanical automation. The authors aim to anticipate future demand across all potential area pairings, acknowledging complex location interplay. A crucial challenge is efficiently collecting diverse contextual data for effective analysis. They employ a sophisticated mechanical automation system integrating deep neural networks (DNNs) to classify journey starting and ending points, outperforming traditional methods in accuracy and performance. Through extensive testing on large-scale datasets, the DNN-based system excels in predicting taxi demand. Leveraging advanced technologies like mechanical automation, the authors pave the way for more efficient transportation systems.

Publisher

IGI Global

Reference32 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

2. A long short-term memory recurrent neural network framework for network traffic matrix prediction. arXiv preprint;A.Azzouni,2017

3. XGBoost

4. DISC: Deep Image Saliency Computing via Progressive Representation Learning

5. Deep Learning-Based Classification of Hyperspectral Data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3