A Heart Monitoring System for a Mobile Device

Author:

Lee Duck Hee1,Rabbi Ahmed Fazle1,Root Noah1,Fazel-Rezai Reza1,Choi Jaesoon2,de León Pablo3,Wynne Joshua4

Affiliation:

1. Department of Electrical Engineering, University of North Dakota, Grand Forks, ND, USA

2. Korea Artificial Organ Center, Korea University Hospital, Korea University, Seoul, Korea

3. John D. Odegard School of Aerospace Sciences, University of North Dakota, Grand Forks, ND, USA

4. School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND, USA

Abstract

There have been major advances in research and development of devices for the diagnosis of patients in the medical field. A light and portable wireless system to monitor human physiological signals has been always a medical personnel’s dream. An e-health monitoring system is a widely used noninvasive diagnosis tool for an ambulatory patient who may be at risk from latent life threatening cardiac abnormalities. The authors proposed a high performance and intelligent wireless measuring e-health monitoring system for a mobile device that is characterized by the small sized and low power consumption. The hardware system consists of an one-chip microcontroller (Atmega 128L), a wireless module, and electrocardigram (ECG) signal preprocessing including filtering, power noise canceling, and level shifting. The software utilizes a recursive filter and preprocessing algorithm to detect ECG signal parameters, i.e., QRS-complex, Q-R-T points, HR, and QT-interval. To easily interface with a mobile device, an analyzer program operates on a Windows mobile OS. This paper described the system that was developed and successfully tested for a wireless transmission of ECG signals to a mobile device.

Publisher

IGI Global

Subject

Computer Science Applications,History,Education

Reference26 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3