A Survey on MapReduce Implementations

Author:

Al-Badarneh Amer1,Mohammad Amr1,Harb Salah1

Affiliation:

1. Jordan University of Science & Technology, Irbid, Jordan

Abstract

A distinguished successful platform for parallel data processing MapReduce is attracting a significant momentum from both academia and industry as the volume of data to capture, transform, and analyse grows rapidly. Although MapReduce is used in many applications to analyse large scale data sets, there is still a lot of debate among scientists and researchers on its efficiency, performance, and usability to support more classes of applications. This survey presents a comprehensive review of various implementations of MapReduce framework. Initially the authors give an overview of MapReduce programming model. They then present a broad description of various technical aspects of the most successful implementations of MapReduce framework reported in the literature and discuss their main strengths and weaknesses. Finally, the authors conclude by introducing a comparison between MapReduce implementations and discuss open issues and challenges on enhancing MapReduce.

Publisher

IGI Global

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Big Data Analytics in Weather Forecasting: A Systematic Review;Archives of Computational Methods in Engineering;2021-06-28

2. Big data handling mechanisms in the healthcare applications: A comprehensive and systematic literature review;Journal of Biomedical Informatics;2018-06

3. On the Exploration of Equal Length Cellular Automata Rules Targeting a MapReduce Design in Cloud;International Journal of Cloud Applications and Computing;2018-04

4. Verification and Identification Approach to Maintain MVCC in Cloud Computing;International Journal of Cloud Applications and Computing;2017-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3