A Parallel Hardware Architecture based on Node-Depth Encoding to Solve Network Design Problems

Author:

Gois Marcilyanne M.1,Matias Paulo2,Perina André B.3,Bonato Vanderlei3,Delbem Alexandre C. B.3

Affiliation:

1. Escola de Engenharia de São Carlos (EESC), University of São Paulo (USP), São Carlos, São Paulo, Brazil

2. Instituto de Física de São Carlos (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil

3. Instituto de Ciências Matemáticas e de Computação (ICMC), University of São Paulo (USP), São Carlos, São Paulo, Brazil

Abstract

Many problems involving network design can be found in the real world, such as electric power circuit planning, telecommunications and phylogenetic trees. In general, solutions for these problems are modeled as forests represented by a graph manipulating thousands or millions of input variables, making it hard to obtain the solutions in a reasonable time. To overcome this restriction, Evolutionary Algorithms (EAs) with dynamic data structures (encodings) have been widely investigated to increase the performance of EAs for Network Design Problems (NDPs). In this context, this paper proposes a parallelization of the node-depth encoding (NDE), a data structure especially designed for NDPs. Based on the NDE the authors have developed a parallel algorithm and a hardware architecture implemented on FPGA (Field-Programmable Gate Array), denominated Hardware Parallelized NDE (HP-NDE). The running times obtained in a general purpose processor (GPP) and the HP-NDE are compared. The results show a significant speedup in relation to the GPP solution, solving NDP in a time limited by a constant. Such time upper bound can be satisfied for any size of network until the hardware resources available on the FPGA are depleted. The authors evaluated the HP-NDE on a Stratix IV FPGA with networks containing up to 2048 nodes.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sublinear evaluation of complex networks for extensive exploration of configurations for critical scenarios and decision making;2021 International Conference on Computational Science and Computational Intelligence (CSCI);2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3