Composition of Local Normal Coordinates and Polyhedral Geometry in Riemannian Manifold Learning

Author:

Miranda Jr. Gastão F.1,Giraldi Gilson2,Thomaz Carlos E.3,Millàn Daniel4

Affiliation:

1. Department of Mathematics, Federal University of Sergipe, Sao Cristovao, Brazil

2. National Laboratory for Scientific Computing, Petropolis, Brazil

3. Department of Electrical Engineering, University Center of FEI, Sao Bernardo do Campo, Brazil

4. Polytechnic University of Catalonia-Barcelona, Barcelona, Spain

Abstract

The Local Riemannian Manifold Learning (LRML) recovers the manifold topology and geometry behind database samples through normal coordinate neighborhoods computed by the exponential map. Besides, LRML uses barycentric coordinates to go from the parameter space to the Riemannian manifold in order to perform the manifold synthesis. Despite of the advantages of LRML, the obtained parameterization cannot be used as a representational space without ambiguities. Besides, the synthesis process needs a simplicial decomposition of the lower dimensional domain to be efficiently performed, which is not considered in the LRML proposal. In this paper, the authors address these drawbacks of LRML by using a composition procedure to combine the normal coordinate neighborhoods for building a suitable representational space. Moreover, they incorporate a polyhedral geometry framework to the LRML method to give an efficient background for the synthesis process and data analysis. In the computational experiments, the authors verify the efficiency of the LRML combined with the composition and discrete geometry frameworks for dimensionality reduction, synthesis and data exploration.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometric Data Analysis Based on Manifold Learning with Applications for Image Understanding;2017 30th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T);2017-10

2. Using Dimensionality Reduction to Create New Materials from Tabular BRDFs;2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI);2017-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3