Affiliation:
1. System Dynamics Group, University of Bergen, Norway
Abstract
Option price prediction has been an important issue in the finance literature within recent years. Affected by numerous factors, option price forecasting remains a challenging problem. In this study, a novel hybrid model for forecasting option price consisting of parametric and non-parametric methods is presented. This method is composed of three stages. First, the conventional option pricing methods such as Binomial Tree, Monte Carlo, and Finite Difference are used to primarily calculate the option prices. Next, the author employs an Adaptive Neuro-Fuzzy Inference System (ANFIS) in which the parameters are trained with particle swarm optimization to minimize the prediction errors associated with parametric methods. To select the best input data for the ANFIS structure, which has high mutual information associated with the future option price, the proposed method uses an entropy approach. Experimental examples with data from the Australian options market demonstrate the effectivity of the proposed hybrid model in enhancing the prediction accuracy compared to another method.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献