Semi-Automatic Ontology Construction by Exploiting Functional Dependencies and Association Rules

Author:

Cagliero Luca1,Cerquitelli Tania1,Garza Paolo2

Affiliation:

1. Politecnico di Torino, Italy

2. Politecnico di Milano, Italy

Abstract

This paper presents a novel semi-automatic approach to construct conceptual ontologies over structured data by exploiting both the schema and content of the input dataset. It effectively combines two well-founded database and data mining techniques, i.e., functional dependency discovery and association rule mining, to support domain experts in the construction of meaningful ontologies, tailored to the analyzed data, by using Description Logic (DL). To this aim, functional dependencies are first discovered to highlight valuable conceptual relationships among attributes of the data schema (i.e., among concepts). The set of discovered correlations effectively support analysts in the assertion of the Tbox ontological statements (i.e., the statements involving shared data conceptualizations and their relationships). Then, the analyst-validated dependencies are exploited to drive the association rule mining process. Association rules represent relevant and hidden correlations among data content and they are used to provide valuable knowledge at the instance level. The pushing of functional dependency constraints into the rule mining process allows analysts to look into and exploit only the most significant data item recurrences in the assertion of the Abox ontological statements (i.e., the statements involving concept instances and their relationships).

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Reference29 articles.

1. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large data-bases. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of the International Conference on Very Large Data Bases (pp. 487-499). San Francisco, CA: Morgan Kaufmann.

2. Augurusa, E., Braga, D., Campi, A., & Ceri, S. (2003). Design and implementation of a graphical interface to XQuery. In G. B. Lamont, H. Haddad, G. A. Papadopoulos, & B. Panda (Eds.), Proceedings of the ACM Symposium on Applied Computing (pp. 1163-1167). New York, NY: ACM Press.

3. Baldi, M., Baralis, E., & Risso, F. (2005). Data mining techniques for effective and scalable traffic analysis. In A. Clemm, O. Festor, & A. Pras (Eds.), Proceedings of the IEEE International Symposium on Integrated Network Management (pp. 105-118). Washington, DC: IEEE Computer Society.

4. Baralis, E., Cagliero, L., Cerquitelli, T., D’Elia, V., & Garza, P. (2010). Support driven opportunistic aggregation for generalized itemset extraction. In Proceedings of the IEEE Conference on Intelligent Systems (pp. 102-107). Washington, DC: IEEE Computer Society.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ConChi;Business Intelligence;2016

2. ConChi;Advances in Wireless Technologies and Telecommunication;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3