A Context-Based Performance Enhancement Algorithm for Columnar Storage in MapReduce with Hive

Author:

Sharma Yashvardhan1,Verma Saurabh1,Kumar Sumit1,U. Shivam1

Affiliation:

1. Department of Computer Science and Information Systems, Birla Institute of Technology and Science, Pilani, India

Abstract

To achieve high reliability and scalability, most large-scale data warehouse systems have adopted the cluster-based architecture. In this context, MapReduce has emerged as a promising architecture for large scale data warehousing and data analytics on commodity clusters. The MapReduce framework offers several lucrative features such as high fault-tolerance, scalability and use of a variety of hardware from low to high range. But these benefits have resulted in substantial performance compromise. In this paper, we propose the design of a novel cluster-based data warehouse system, Daenyrys for data processing on Hadoop – an open source implementation of the MapReduce framework under the umbrella of Apache. Daenyrys is a data management system which has the capability to take decision about the optimum partitioning scheme for the Hadoop's distributed file system (DFS). The optimum partitioning scheme improves the performance of the complete framework. The choice of the optimum partitioning is query-context dependent. In Daenyrys, the columns are formed into optimized groups to provide the basis for the partitioning of tables vertically. Daenyrys has an algorithm that monitors the context of current queries and based on the observations, it re-partitions the DFS for better performance and resource utilization. In the proposed system, Hive, a MapReduce-based SQL-like query engine is supported above the DFS.

Publisher

IGI Global

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3