Spatial Pattern Mining for Soil Erosion Characterization

Author:

Selmaoui-Folcher Nazha1,Flouvat Frédéric1,Gay Dominique2,Rouet Isabelle1

Affiliation:

1. University of New Caledonia, New Caledonia

2. Orange Labs, France

Abstract

The protection and the maintenance of the exceptional environment of New Caledonia are major goals for this territory. Among environmental problems, erosion has a strong impact on terrestrial and coastal ecosystems. However, due to the volume of data and its complexity, assessment of hazard at a regional scale is time-consuming, costly and rarely updated. Therefore, understanding and predicting environmental phenomenons need advanced techniques of analysis and modelization. In order to improve the understanding of the erosion phenomenon, this paper proposes a spatial approach based on co-location mining and GIS. Considering a set of Boolean spatial features, the goal of co-location mining is to find subsets of features often located together. This system provides useful and interpretable knowledge based on a new interestingness measure for co-locations and a new visualization of the discovered knowledge. The interestingness measure better reflects the importance of a co-location for the experts, and is completely integrated in the mining process. The visualization approach is a simple, concise and intuitive representation of the co-locations that takes into consideration the spatial nature of the underlying objects and the experts practice.

Publisher

IGI Global

Subject

Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research in Agricultural and Environmental Information Systems;Geospatial Intelligence;2019

2. Mining Efficient Fuzzy Bio-Statistical Rules for Association of Sandalwood in Pachaimalai Hills;International Journal of Agricultural and Environmental Information Systems;2015-04

3. Domain-driven co-location mining;GeoInformatica;2014-06-05

4. Research in Agricultural and Environmental Information Systems;International Journal of Agricultural and Environmental Information Systems;2014-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3