ACPSO

Author:

Ouadfel Salima1,Batouche Mohamed1,Ahmed-Taleb Abdlemalik2

Affiliation:

1. University Mentouri – Constantine, Algeria

2. Universite Valenciennes, France

Abstract

In order to implement clustering under the condition that the number of clusters is not known a priori, the authors propose a novel automatic clustering algorithm in this chapter, based on particle swarm optimization algorithm. ACPSO can partition images into compact and well separated clusters without any knowledge on the real number of clusters. ACPSO used a novel representation scheme for the search variables in order to determine the optimal number of clusters. The partition of each particle of the swarm evolves using evolving operators which aim to reduce dynamically the number of naturally occurring clusters in the image as well as to refine the cluster centers. Experimental results on real images demonstrate the effectiveness of the proposed approach.

Publisher

IGI Global

Reference37 articles.

1. Swarm intelligence algorithms for data clustering;A.Abraham;Soft computing for knowledge discovery and data mining,2007

2. Computational experience on four algorithms for the hard clustering problem

3. Alam, S., Dobbie, G., & Riddle, P. (2008). An evolutionary particle swarm optimization algorithm for data clustering. In Swarm Intelligence Symposium, (pp. 1-6).

4. A clustering technique for summarizing multivariate data

5. Bandyopadhyay, S. (2003). Simulated annealing for fuzzy clustering: Variable representation, evolution of the number of clusters and remote sensing applications. unpublished, private communication.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey and Analysis of Content-Based Image Retrieval Systems;Control Applications in Modern Power System;2020-11-27

2. An improved ant algorithm with LDA-based representation for text document clustering;Journal of Information Science;2016-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3