Algorithms for ISAR Image Recognition and Classification

Author:

Abstract

Two different novel methods for classification of aircraft categories of Inverse Synthetic Aperture Radar (ISAR) images are presented. The first method forms numerical equivalents to shape, size, and other aircraft features as critical criteria to constitute the algorithm for their correct classification. The second method compares each ISAR image to unions of images of the different aircraft categories. ISAR images are constructed based on the Doppler shifts of various parts, caused by the rotation of the aircraft and the radar reflection pulse shape, which includes the size or duration of the radar pulse. The proposed classification algorithms were tested on seven aircraft categories. All seven different aircraft models are flying a holding pattern. The aim of both algorithms is to quickly match and determine the similarity of the captured aircraft to the seven different categories where the aircraft is in any position of a prescribed holding pattern. Experimental results clearly indicate that in most parts of the holding pattern the category of the aircraft can be successfully identified with both proposed methods. The union method shows more successful identification results and is superior to the results we obtained in the first proposed method.

Publisher

IGI Global

Reference14 articles.

1. Generation of point scatterer models for simulating ISAR images of ships.;B.Haywood;Radar,1997

2. Efficient classification of ISAR images

3. Li, Q. (2007). Study of monopulse radar target three dimensional imaging and recognition. (Ph.D dissertation). Xidian University.

4. Manikandan, J., Venkataramani, B., & Jayachandran, M. (2007). Evaluation of edge detection techniques towards implementation of automatic target recognition. In Proceedings of Conference on Computational Intelligence and Multimedia Applications, (vol. 2, pp. 441-445). IEEE.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3