Predictive Analytics and Data Mining

Author:

Chauhan Ritu1,Kaur Harleen2

Affiliation:

1. Amity University, India

2. Hamdard University, India

Abstract

High dimensional databases are proving to be a major concern among the researches to extract relevant information for futuristic decision making. Real world data is high dimensional in nature and comprises of irrelevant features, missing values, and redundancy, which requires serious concerns. Utilizing all such features can mislead the results for emergent prediction. Therefore, such databases are critical in nature to determine optimal solutions. To deal with such issues, the authors have developed and implemented a Cluster Analysis Study Behavior of School Children from Large Databases (CABS) framework to retrieve effective and efficient clusters from high dimensional human behavior datasets for school children in US. They have applied feature selection technique and hierarchical agglomerative clustering technique to discover clusters of vivid shape and size to retrieve knowledge from large databases. This study was conducted for Health Behavior in School-Aged Children (HBSC) using Correlation-Based Feature Selection (CFS) technique to reduce the inconsistent data records and select relevant features that will eventually extract the appropriate data to merge similar data and retrieve clusters. However, predictive analytics can facilitate a more thorough extraction of knowledge to facilitate better quality and faster decisions. The authors have implemented the current framework in R language where the clustering was emphasized using pvclust package. The proposed framework is highly efficient in discovering hidden and implicit knowledge from large databases due to its accessibility to handling and discovering clusters of variant shapes.

Publisher

IGI Global

Reference65 articles.

1. Abraham, R., Simha, J. B., & Iyengar, S. S. (2007). Medical data mining with a new algorithm for feature selection and naïve Bayesian classifier. In Proceedings of IEEE International Conference on Information Technology, (pp. 44-49). IEEE.

2. Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of ACM SIGMOD International Conference on Management of Data. Seattle, WA: ACM.

3. Aha, D. W., & Bankert, R. L. (1995). A comparative evaluation of sequential feature selection algorithms. In Proceedings of Fifth International Workshop on Artificial Intelligence and Statistics. IEEE.

4. Almuallim, H., & Dietterich, T. G. (1991). Learning with many irrelevant features. In Proceedings of the Ninth National Conference. Cambridge, MA: MIT Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3