XML Mining for Semantic Web

Author:

Berlanga Rafael1,Nebot Victoria1

Affiliation:

1. Universitat Jaume I, Spain

Abstract

This chapter describes the convergence of two influential technologies in the last decade, namely data mining (DM) and the Semantic Web (SW). The wide acceptance of new SW formats for describing semantics-aware and semistructured contents have spurred on the massive generation of semantic annotations and large-scale domain ontologies for conceptualizing their concepts. As a result, a huge amount of both knowledge and semantic-annotated data is available in the web. DM methods have been very successful in discovering interesting patterns which are hidden in very large amounts of data. However, DM methods have been largely based on simple and flat data formats which are far from those available in the SW. This chapter reviews and discusses the main DM approaches proposed so far to mine SW data as well as those that have taken into account the SW resources and tools to define semantics-aware methods.

Publisher

IGI Global

Reference86 articles.

1. Abadi, D. J., Marcus, A., Madden, S., & Hollenbach, K. J. (2007). Scalable Semantic Web data management using vertical partitioning. In C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas, & E. J. Neuhold (Eds.), Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB), (pp. 411-422). ACM.

2. A document clustering algorithm for discovering and describing topics

3. ARQ. (n.d.). A SPARQL processor for Jena. Retrieved from http://jena.sourceforge.net/ARQ/

4. The DL-lite family and relations.;A.Artale;Journal of Artificial Intelligence Research,2009

5. Atserias, J., Zaragoza, H., Ciaramita, M., & Attardi, G. (2008). Semantically annotated snapshot of the English Wikipedia. Proceedings of the International Conference on Language Resources and Evaluation (LREC). European Language Resources Association.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3