Fault-Tolerant Control of Mechanical Systems Using Neural Networks

Author:

Huang Sunan1,Tan Kok Kiong1,Lee Tong Heng1

Affiliation:

1. National University of Singapore, Singapore

Abstract

Due to harsh working environment, control systems may degrade to an unacceptable level, causing more regular fault occurrences. In this case, it is necessary to provide the fault-tolerant control for operating the system continuously. The existing control techniques have given some ways to solve this problem, but if the system behaves in an unanticipated manner, then the control system may need to be modified, so that it handles the modified system. In this chapter, the authors are concerned with how this control system can be done automatically, and when it can be done successfully. They aimed in this work at handling unanticipated failure modes, for which solutions have not been solved completely. The model-based fault-tolerant controller with a self-detecting algorithm is proposed. Here, the radial basis function neural network is used in the controller to estimate the unknown failures. Once the failure is detected, the re-configured control is activated and then maintains the system continously. The fault-tolerant control is illustrated in two cases. It is shown that the proposed method can cope with different failure modes which are unknown a priori. The result indicates that the solution is suitable for a class of mechanical systems whose dynamics are subject to sudden changes resulting from component failures when working in a harsh environment.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-based fault-tolerant controller design for handling both actuator and sensor faults of multirotors;2022 International Conference on Unmanned Aircraft Systems (ICUAS);2022-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3