An Architectural and Evaluative Review of Implicit and Explicit SIP Overload Handling

Author:

Happenhofer Marco1,Fabini Joachim1,Egger Christoph1,Hirschbichler Michael1

Affiliation:

1. Vienna University of Technology, Austria

Abstract

Last year’s trend to migrate circuit-switched voice networks to packet switched Internet Protocol (IP) based networks has favored wide deployment of Session Initiation Protocol (SIP) based systems and networks. As a reaction to large-scale SIP deployment experiences in the field and the need to implement high availability and reliability within these new networks, the focus of SIP extension standardization has shifted from adding new SIP signaling functionality to operational and maintenance aspects, a particular importance being attributed to overload control. Overload denotes a situation in which the traffic injected into a system exceeds the system’s designed capacity. The authors present a detailed categorization of overload architectures and outline main reasons why SIP-based networks are at high risk to collapse when operating at overload. Using measurements in a real SIP infrastructure this paper compares the performance of two overload protection schemes, namely implicit and explicit overload protection, against the performance of non-protected systems. The measurement results recommend overload protection as a mandatory component of commercial SIP deployments to safeguard operation and prevent system collapse in case of overload.

Publisher

IGI Global

Reference18 articles.

1. Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., & Gurle, D. (2002). RFC 3428: Session Initiation Protocol (SIP) Extension for Instant Messaging. Retrieved from http://www.rfc-editor.org/rfc/rfc3428.txt

2. Egger, C., Happenhofer, M., & Reichl, P. (2011, September). SIP proxy high-load detection by continuous analysis of response delay values. In Proceedings of the 19th International Conference on Software, Telecommunications and Computer Networks, Split and Adriatic Islands, Croatia.

3. Egger, C., Hirschbichler, M., & Reichl, P. (2011, September). Enhancing SIP performance by dynamic manipulation of retransmission timers. In Proceedings of the 6ter Workshop Leistungs, Zuverlaessigkeits- und Verlaesslichkeitsbewertung von Kommunikationsnetzen und Verteilten Systemen, Hamburg, Germany.

4. European Telecommunications Standards Institute (ETSI). (2010). NGN congestion and overload control; Part 2: Core GOCAP and NOCA entity behaviours (Tech. Rep. No. ES 283039-2). Sophia-Antipolis, France: Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN).

5. Gurbani, V., Hilt, V., & Schulzrinne, H. (2011). RFC3261: Session Initiation Protocol (SIP) overload control. Retrieved from http://tools.ietf.org/html/draft-hilt-sipping-overload-08

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. QoE Management for Future Networks;Lecture Notes in Computer Science;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3