Improving Energy-Efficiency of Scientific Computing Clusters

Author:

Niemi Tapio1,Kommeri Jukka1,Hameri Ari-Pekka2

Affiliation:

1. Helsinki Institute of Physics, Finland

2. University of Lausanne, Switzerland

Abstract

The authors applied operations management principles on scheduling and allocation to scientific computing clusters to decrease energy consumption and to increase throughput. They challenged the traditional one job per one processor core scheduling method commonly used in scientific computing with parallel processing and bottleneck management. The authors tested the effect of increased parallelism by using different test applications related to high-energy physics computing. The test results showed that at best their methods both decreased energy consumption down to 40% and increased throughput up to 100%, compared to the standard one task per CPU core method. The trade-off is that processing times of individual tasks get longer, but in scientific computing, the overall throughput and energy-efficiency are often more important.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Green Big Data at CERN;Future Generation Computer Systems;2018-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3