Towards Building Efficient Malware Detection Engines Using Hybrid CPU/GPU-Accelerated Approaches

Author:

Pungila Ciprian1,Negru Viorel1

Affiliation:

1. West University of Timişoara, Romania

Abstract

This chapter presents an outline of the challenges involved in constructing efficient malware detection engines using hybrid CPU/GPU-accelerated architectures and discusses how one can overcome such challenges. Starting with a general problem description for malware detection and moving on to the algorithmic background involved for solving it, the authors present a review of the existing approaches for detecting malware and discuss how such approaches may be improved through GPU-accelerated processing. They describe and discuss several hybrid hardware architectures built for detecting malicious software and outline the particular characteristics of each, separately, followed by a debate on their performance and most suitable application in real-world environments. Finally, the authors tackle the problem of performing real-time malware detection and present the most important aspects that need to be taken into account in intrusion detection systems.

Publisher

IGI Global

Reference48 articles.

1. Efficient string matching

2. Bott, E. (2012). The malware numbers game: how many viruses are out there? ZDNet.com. Retrieved 25th of September, 2012 from http://www.zdnet.com/blog/bott/the-malware-numbers-game-how-many-viruses-are-out-there/4783

3. A fast string searching algorithm

4. Host anomaly detection performance analysis based on system call of neuro-fuzzy using Soundex algorithm and N-gram technique;B.Cha;Proceedings of Systems Communications,2005

5. Cha, S. K., Moraru, I., Jang, J., Truelove, J., Brumley, D., & Andersen, D. G. (2010). Split-screen: Enabling efficient, distributed malware detection. In Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation (NSDI) (p. 25). USENIX.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3