F3N

Author:

Elmazi Donald1,Spaho Evjola1,Matsuo Keita2,Oda Tetsuya3,Ikeda Makoto3,Barolli Leonard3

Affiliation:

1. Polytechnic University of Tirana, Albania

2. Fukuoka Prefectural Fukuoka Technical High School, Japan

3. Fukuoka Institute of Technology, Japan

Abstract

Sensor networks supported by recent technological advances in low power wireless communications along with silicon integration of various functionalities are emerging as a critically important computer class that enable novel and low cost applications. There are many fundamental problems that Wireless Sensor Networks (WSNs) research will have to address in order to ensure a reasonable degree of cost and system quality. Cluster formation and cluster head selection are important problems in WSN applications and can drastically affect the net- work's communication energy dissipation. However, selecting of the cluster head is not easy in different environments which may have different characteristics. In this paper, in order to deal with this problem, the authors propose a power reduction algorithm for WSNs based on Fuzzy Logic (FL) and Number of Neighbour Nodes (3N). They call this system F3N. The authors evaluate F3N and LEACH by many simulation results. The performance of F3N system is evaluated for tree different parameters: Remaining Battery Power of Sensor (RPS); Degree of Number of Neighbour Nodes (D3N); and Distance from Cluster Centroid (DCC). From the simulation results, they found that the probability of a sensor node to be a cluster head is increased with increase of number of neighbour nodes and remained battery power and is decreased with the increase of distance from the cluster centroid.

Publisher

IGI Global

Reference23 articles.

1. Wireless sensor and actor networks: research challenges

2. Wireless sensor networks: a survey

3. Routing techniques in wireless sensor networks: a survey

4. Max-min d-cluster formation in wireless ad hoc networks

5. A Cluster Head Decision System for Sensor Networks Using Fuzzy Logic and Number of Neighbor Nodes.;J.Anno;Proceedings of IEEE Ubi-Media 2008,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3