Evaluation of Spatio-Temporal Microsimulation Systems

Author:

Kopp Christine1,Kochan Bruno2,May Michael1,Pappalardo Luca3,Rinzivillo Salvatore4,Schulz Daniel1,Simini Filippo5

Affiliation:

1. Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS), Germany

2. University of Hasselt, Belgium

3. ISTI-CNR, Italy & University of Pisa, Italy

4. ISTI-CNR, Italy

5. University of Bristol, UK

Abstract

The increasing expressiveness of spatio-temporal microsimulation systems makes them attractive for a wide range of real world applications. However, the broad field of applications puts new challenges to the quality of microsimulation systems. They are no longer expected to reflect a few selected mobility characteristics but to be a realistic representation of the real world. In consequence, the validation of spatio-temporal microsimulations has to be deepened and to be especially moved towards a holistic view on movement validation. One advantage hereby is the easier availability of mobility data sets at present, which enables the validation of many different aspects of movement behavior. However, these data sets bring their own challenges as the data may cover only a part of the observation space, differ in its temporal resolution, or not be representative in all aspects. In addition, the definition of appropriate similarity measures, which capture the various mobility characteristics, is challenging. The goal of this chapter is to pave the way for a novel, better, and more detailed evaluation standard for spatio-temporal microsimulation systems. The chapter collects and structure’s various aspects that have to be considered for the validation and comparison of movement data. In addition, it assembles the state-of-the-art of existing validation techniques. It concludes with examples of using big data sources for the extraction and validation of movement characteristics outlining the research challenges that have yet to be conquered.

Publisher

IGI Global

Reference35 articles.

1. A General Framework for Using Aggregation in Visual Exploration of Movement Data

2. Visual Analytics of Movement

3. Basic Concepts of Movement Data

4. Visual Analytics for Understanding Spatial Situations from Episodic Movement Data

5. Arentze, T., & Timmermans. (2005). ALBATROSS 2: A learning-based transportation oriented simulation system. Eindhoven, The Netherlands: European Institute of Retailing and Services Studies.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3