Investigating of Hybrid Meta-Heuristics to Solve the Large-Scale Multi-Source Weber Problems and Performance Measuring of them with Statistical Tests

Author:

Ghaderi Abdolsalam1

Affiliation:

1. University of Kurdistan, Iran

Abstract

The location–allocation problems are a class of complicated optimization problems that requires finding sites for m facilities and to simultaneously allocate n customers to those facilities to minimize the total transportation costs. Indeed, these problems, belonging to the class NP-hard, have a lot of local optima solutions. In this chapter, three hybrid meta-heuristics: genetic algorithm, variable neighborhood search and particle swarm optimization, and a hybrid local search approach. These are investigated to solve the uncapacitated continuous location-allocation problem (multi-source Weber problem). In this regard, alternate location allocation and exchange heuristics are used to find the local optima of the problem within the framework of hybrid algorithms. In addition, some large-scale problems are employed to measure the effectiveness and efficiency of hybrid algorithms. Obtained results from these heuristics are compared with local search methods and with each other. The experimental results show that the hybrid meta-heuristics produce much better solutions to solve large-scale problems. Moreover, the results of two non-parametric statistical tests detected a significant difference in hybrid algorithms such that the hybrid variable neighborhood search and particle swarm optimization algorithm outperform the others.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3