Integrating Heterogeneous Data for Big Data Analysis

Author:

Millham Richard1

Affiliation:

1. University of Bahamas, Bahamas & Durban University of Technology, South Africa

Abstract

Data is an integral part of most business-critical applications. As business data increases in volume and in variety due to technological, business, and other factors, managing this diverse volume of data becomes more difficult. A new paradigm, data virtualization, is used for data management. Although a lot of research has been conducted on developing techniques to accurately store huge amounts of data and to process this data with optimal resource utilization, research remains on how to handle divergent data from multiple data sources. In this chapter, the authors first look at the emerging problem of “big data” with a brief introduction to the emergence of data virtualization and at an existing system that implements data virtualization. Because data virtualization requires techniques to integrate data, the authors look at the problems of divergent data in terms of value, syntax, semantic, and structural differences. Some proposed methods to help resolve these differences are examined in order to enable the mapping of this divergent data into a homogeneous global schema that can more easily be used for big data analysis. Finally, some tools and industrial examples are given in order to demonstrate different approaches of heterogeneous data integration.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantic-aided automation of interface mapping in enterprise integration with conflict detection;Information Systems and e-Business Management;2016-07-12

2. Evaluating Different In-Memory Cached Architectures in Regard to Time Efficiency for Big Data Analysis;Pattern Analysis, Intelligent Security and the Internet of Things;2015

3. SAIL: A Domain-Specific Language for Semantic-Aided Automation of Interface Mapping in Enterprise Integration;On the Move to Meaningful Internet Systems: OTM 2015 Workshops;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3