Hybrid Approach Using Deep Autoencoder and Machine Learning Techniques for Cyber-Attack Detection

Author:

Kumar Vikash1ORCID,Sinha Ditipriya1

Affiliation:

1. National Institute of Technology Patna, India

Abstract

The feature reduction from the vast amount of data collected from the Internet is challenging and labor-intensive. Data imbalance is another problem in decision-making analysis that leads to a biased model favoring classes with larger samples. This paper proposes a hybrid model using autoencoder and machine learning models. It deals with feature reduction and handles imbalance attack classes using SMOTE method to balance the dataset, and then AE is trained. The bottleneck code of AE is stacked with different classifiers on datasets such as NSL-KDD, UNSW-NB15 and BoT-IoT to evaluate the proposed method. The performance of the proposed approach shows improvement over attack detection without AE. The most noticeable change occurred for SVM on the NSL-KDD dataset that shows doubled improvement of accuracy. In the case of UNSW-NB15, the results vary and see an improvement for the LR model. The BoT-IoT dataset sees the lowest performance variation, i.e., 0%-6%.

Publisher

IGI Global

Subject

Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3