Deep Convolutional Neural Networks for Customer Churn Prediction Analysis

Author:

Chouiekh Alae1,El Haj El Hassane Ibn1

Affiliation:

1. Laboratory of Multimedia, Signal and Communications Systems, National Institute of Posts and Telecommunications, Rabat, Morocco

Abstract

Several machine learning models have been proposed to address customer churn problems. In this work, the authors used a novel method by applying deep convolutional neural networks on a labeled dataset of 18,000 prepaid subscribers to classify/identify customer churn. The learning technique was based on call detail records (CDR) describing customers activity during two-month traffic from a real telecommunication provider. The authors use this method to identify new business use case by considering each subscriber as a single input image describing the churning state. Different experiments were performed to evaluate the performance of the method. The authors found that deep convolutional neural networks (DCNN) outperformed other traditional machine learning algorithms (support vector machines, random forest, and gradient boosting classifier) with F1 score of 91%. Thus, the use of this approach can reduce the cost related to customer loss and fits better the churn prediction business use case.

Publisher

IGI Global

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Reference40 articles.

1. Ali. (2014). CNN features off-the-shelf: an astounding baseline for recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.

2. Customer churn prediction in the telecommunication sector using a rough set approach

3. A novel evolutionary data mining algorithm with applications to churn prediction

4. Bahrampour, S., Ramakrishnan, N., Schott, L., & Shah, M. (2016). Comparative study of caffe, neon, theano, and torch for deep learning. Academic Press.

5. Bengio, Y., Boulanger-Lewandowski, N., & Pascanu, R. (2013, May). Advances in optimizing recurrent networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 8624-8628). IEEE. DOI: 10.1109/ICASSP.2013.6639349

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3