Application of Higher-Order Neural Networks to Financial Time-Series Prediction

Author:

Fulcher John1,Zhang Ming2,Xu Shuxiang3

Affiliation:

1. University of Wollongong, Australia

2. Christopher Newport University, USA

3. University of Tasmania, Australia

Abstract

Financial time-series data is characterized by nonlinearities, discontinuities, and high-frequency multipolynomial components. Not surprisingly, conventional artificial neural networks (ANNs) have difficulty in modeling such complex data. A more appropriate approach is to apply higher-order ANNs, which are capable of extracting higher-order polynomial coefficients in the data. Moreover, since there is a one-to-one correspondence between network weights and polynomial coefficients, higher-order neural networks (HONNs) — unlike ANNs generally — can be considered open-, rather than “closed-box” solutions, and thus hold more appeal to the financial community. After developing polynomial and trigonometric HONNs (P[T]HONNs), we introduce the concept of HONN groups. The latter incorporate piecewise continuous-activation functions and thresholds, and as a result are capable of modeling discontinuous (or piecewise-continuous) data, and what is more to any degree of accuracy. Several other PHONN variants are also described. The performance of P(T)HONN and HONN groups on representative financial time series is described (i.e., credit ratings and exchange rates). In short, HONNs offer roughly twice the performance of MLP/BP on financial time-series prediction, and HONN groups around 10% further improvement.

Publisher

IGI Global

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformers for Modeling Long-Term Dependencies in Time Series Data: A Review;2023 IEEE Signal Processing in Medicine and Biology Symposium (SPMB);2023-12-02

2. A Deep Learning Method for the Detection and Compensation of Outlier Events in Stock Data;Electronics;2022-10-26

3. Financial Data Prediction by Artificial Sine and Cosine Trigonometric Higher Order Neural Networks;Emerging Capabilities and Applications of Artificial Higher Order Neural Networks;2021

4. Models of Artificial Higher Order Neural Networks;Emerging Capabilities and Applications of Artificial Higher Order Neural Networks;2021

5. Using Recurrent Neural Networks for Data-Centric Business;Data-Centric Business and Applications;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3