Stochastic Approximation Monte Carlo for MLP Learning

Author:

Liang Faming1

Affiliation:

1. Texas A&M University, USA

Abstract

Over the past several decades, multilayer perceptrons (MLPs) have achieved increased popularity among scientists, engineers, and other professionals as tools for knowledge representation. Unfortunately, there is no a universal architecture which is suitable for all problems. Even with the correct architecture, frustrating problems of connection weights training still remain due to the rugged nature of the energy landscape of MLPs. The energy function often refers to the sum-of-square error function for conventional MLPs and the negative logposterior density function for Bayesian MLPs. This article presents a Monte Carlo method that can be used for MLP learning. The main focus is on how to apply the method to train connection weights for MLPs. How to apply the method to choose the optimal architecture and to make predictions for future values will also be discussed, but within the Bayesian framework.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Memoization for Approximate Function Evaluation over Sequence Arguments;Algorithmic Aspects in Information and Management;2014

2. References;Advanced Markov Chain Monte Carlo Methods;2010-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3