Timetable Generation

Author:

Albalooshi Fawzi Abdulaziz1,Shatnawi Safwan Mahmood1ORCID

Affiliation:

1. University of Bahrain, Bahrain

Abstract

Evidence based on ongoing published research shows that timetabling has been a challenge for over two decades. There is a growing need in higher education for a learner-centered solution focused on individual preferences. In the authors' earlier published work, students' group assessment information was mined to determine individualized achievements and predict future performance. In this paper, they extend the work to present a solution that uses students' individualized achievements, expected future performance, and historical registration records to discover students' registration timing patterns, as well as the most appropriate courses for registration. Such information is then processed to build the most suitable timetable for each student in the following semester. Faculty members' time preferences are also predicted based on historical teaching time patterns and course teaching preferences. The authors propose a modified frequent pattern (FP)-tree algorithm to process the predicted information. This results in clustering students to solve the timetable problem based on the predicted courses for registration. Then, it divides the timetable problem into subproblems for resolution. This ensures that time will not conflict within the generated timetables while satisfying both the hard and soft constraints. Both students' and faculty members timetabling preferences are met (88.8% and 85%).

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Association Rule Mining Algorithm Based on FP-tree;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

2. Enhancing the organisation and the management of built environment higher education courses;Quality Assurance in Education;2022-12-09

3. A horizontal partitioning‐based method for frequent pattern mining in transport timetable;Expert Systems;2021-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3