Affiliation:
1. Department of Civil Engineering, Islamic Azad University Roudehen Branch, Tehran, Iran
2. Department of Management, Payame Noor University, Tehran, Iran
Abstract
An efficient adaptive version of Melody Search algorithm (EAMS) is introduced in this study, which is a powerful tool to solve optimization problems in continuous domains. Melody search (MS) algorithm is a recent newly improved version of harmony search (HS), while the algorithm performance strongly depends on fine-tuning of its parameters. Although MS is more efficient for solving continuous optimization problems than most of other HS-based algorithms, the large number of algorithm parameters makes it difficult to use. Hence, the main objective in this study is to reduce the number of algorithm parameters and improving its efficiency. To achieve this, a novel improvisation scheme is introduced to generate new solutions, a useful procedure is developed to determine the possible variable ranges in different iterations and an adaptive strategy is employed to calculate proper parameters' values and choose suitable memory consideration rules during the evolution process. Extensive computational comparisons are carried out by employing a set of eighteen well-known benchmark optimization problems with various characteristics from the literature. The obtained results reveal that EAMS algorithm can achieve better solutions compared to some other HS variants, basic MS algorithms and certain cases of well-known robust optimization algorithms.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献