An Efficient Adaptive Strategy for Melody Search Algorithm

Author:

Ashrafi Seyem Mohammad1,Kourabbaslou Noushin Emami2

Affiliation:

1. Department of Civil Engineering, Islamic Azad University Roudehen Branch, Tehran, Iran

2. Department of Management, Payame Noor University, Tehran, Iran

Abstract

An efficient adaptive version of Melody Search algorithm (EAMS) is introduced in this study, which is a powerful tool to solve optimization problems in continuous domains. Melody search (MS) algorithm is a recent newly improved version of harmony search (HS), while the algorithm performance strongly depends on fine-tuning of its parameters. Although MS is more efficient for solving continuous optimization problems than most of other HS-based algorithms, the large number of algorithm parameters makes it difficult to use. Hence, the main objective in this study is to reduce the number of algorithm parameters and improving its efficiency. To achieve this, a novel improvisation scheme is introduced to generate new solutions, a useful procedure is developed to determine the possible variable ranges in different iterations and an adaptive strategy is employed to calculate proper parameters' values and choose suitable memory consideration rules during the evolution process. Extensive computational comparisons are carried out by employing a set of eighteen well-known benchmark optimization problems with various characteristics from the literature. The obtained results reveal that EAMS algorithm can achieve better solutions compared to some other HS variants, basic MS algorithms and certain cases of well-known robust optimization algorithms.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3