VNS Metaheuristic Based on Thresholding Functions for Brain MRI Segmentation

Author:

Miledi Mariem1,Dhouib Souhail1ORCID

Affiliation:

1. Institut Supérieur de Gestion Industrielle de Sfax, Université de Sfax, Tunisia

Abstract

Image segmentation is a very crucial step in medical image analysis which is the first and the most important task in many clinical interventions. The authors propose in this paper to apply the variable neighborhood search (VNS) metaheuristic on the problem of brain magnetic resonance images (MRI) segmentation. In fact, by reviewing the literature, they notice that when the number of classes increases the computational time of the exhaustive methods grows exponentially with the number of required classes. That's why they exploit the VNS algorithm to optimize two maximizing thresholding functions which are the between-class variance (the Otsu's function) and the entropy thresholding (the Kapur's function). Thus, two versions of the VNS metaheuristic are respectively obtained: the VNS-Otsu and the VNS-Kapur. These two novel proposed thresholding methods are tested on a set of benchmark brain MRI to show their robustness and proficiency.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3