Affiliation:
1. Massey University, New Zealand
2. University of Queensland, Australia
Abstract
Artificial Intelligence (AI) is increasingly embedded in business processes, including the Human Resource (HR) recruitment process. While AI can expedite the recruitment process, evidence from the industry, however, shows that AI-recruitment systems (AIRS) may fail to achieve unbiased decisions about applicants. There are risks of encoding biases in the datasets and algorithms of AI which lead AIRS to replicate and amplify human biases. To develop less biased AIRS, collaboration between HR managers and AI developers for training algorithms and exploring algorithmic biases is vital. Using an exploratory research design, 35 HR managers and AI developers globally were interviewed to understand the role of knowledge sharing during their collaboration in mitigating biases in AIRS. The findings show that knowledge sharing can help to mitigate biases in AIRS by informing data labeling, understanding job functions, and improving the machine learning model. Theoretical contributions and practical implications are suggested.
Subject
Management of Technology and Innovation,Computer Science Applications,Management Information Systems
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献