Formalization of MOF-Based Metamodels

Author:

Favre Liliana María1

Affiliation:

1. Universidad Nacional del Centro de la Pcia. de Buenos Aires, Argentina

Abstract

Formal and semiformal techniques can play complementary roles in MDA-based software development processes. We consider it beneficial for both semiformal and formal specification techniques. On the one hand, semiformal techniques lack a precise semantics; however, they have the ability to visualize language constructions, allowing a great difference in the productivity of the specification process, especially when the graphical view is supported by means of good tools. On the other hand, formal specification allows us to produce a precise and analyzable software specification and clarifies the intended meaning of metamodels, helps to validate model transformations, and provides reference for implementations; however, they require familiarity with formal notations that most designers and implementers do not currently have and the learning curve for the application of these techniques requires considerable time. A combination of metamodeling and formal specification techniques can help us to address MDAbased processes such as reverse engineering, forward engineering and round-trip engineering. In light of this, we propose to use the algebraic metamodeling language, called NEREUS which can be viewed as an intermediate notation. NEREUS can be integrated with different formal languages and object-oriented languages. It is particularly suited for specifying metamodels based on the concepts of entity, relation and system. Most of the MOF metamodel concepts can be mapped directly to NEREUS.

Publisher

IGI Global

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Creating a Functional Interdependency Map for Supporting the “Act of Improvement” in Business Process Improvement Projects;International Journal of Service Science, Management, Engineering, and Technology;2022-02-01

2. Formalizing UML/OCL structural features with FoCaLiZe;Soft Computing;2019-07-13

3. Meta Modeling for Business Process Improvement;Business & Information Systems Engineering;2017-05-23

4. Formalizing Meta Models with FDMM: The ADOxx Case;Enterprise Information Systems;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3