Mining Climate and Remote Sensing Time Series to Improve Monitoring of Sugar Cane Fields

Author:

Romani Luciana1,de Sousa Elaine2,Ribeiro Marcela3,de Ávila Ana4,Zullo Jurandir4,Traina Caetano2,Traina Agma2

Affiliation:

1. University of Sao Paulo at Sao Carlos, Brazil & Embrapa Agriculture Informatics at Campinas, Brazil

2. University of Sao Paulo at Sao Carlos, Brazil

3. Federal University of Sao Carlos, Brazil

4. University of Campinas, Brazil

Abstract

This chapter discusses how to take advantage of computational models to analyze and extract useful information from time series of climate data and remote sensing images. This kind of data has been used for researching on climate changes, as well as to help on improving yield forecasting of agricultural crops and increasing the sustainable usage of the soil. The authors present three techniques based on the Fractal Theory, data streams and time series mining: the FDASE algorithm, to identify correlated attributes; a method that combines intrinsic dimension measurements with statistical analysis, to monitor evolving climate and remote sensing data; and the CLIPSMiner algorithm applied to multiple time series of continuous climate data, to identify relevant and extreme patterns. The experiments with real data show that data mining is a valuable tool to help agricultural entrepreneurs and government on monitoring sugar cane areas, helping to make the production more useful to the country and to the environment.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3