Utilizing Enterprise Economic Benefit Evaluation Methods in Edge Intelligent Neural Network Applications
Author:
Affiliation:
1. State Grid Zhejiang Electric Power Co., Ltd., China
2. Saigon University, Vietnam
Abstract
The core of enterprise economic benefit evaluation lies in the development of a quantitative identification model. The Back Propagation (BP) neural network possesses robust parallel computing, adaptive learning, and error correction capabilities, which can effectively reveal the economic benefits of enterprises and their relationship with influencing factors. This study establishes an economic benefit evaluation model for express delivery enterprises based on the BP neural network. The model takes the annual profit rate of enterprises as the quantitative index of economic benefits and selects 13 factors, both external and internal, influencing the annual profit rate of express delivery enterprises as inputs for the BP neural network model. The economic benefit evaluation model based on BP neural network meets the requirement of objective mean square error in the 300th training cycle. The research results demonstrate that the BP model significantly saves computing time and enables rapid, comprehensive, and objective evaluation of the economic benefits of industrial enterprises.
Publisher
IGI Global
Reference27 articles.
1. The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things
2. At the Confluence of Artificial Intelligence and Edge Computing in IoT-Based Applications: A Review and New Perspectives
3. Emerging Memristive Artificial Synapses and Neurons for Energy‐Efficient Neuromorphic Computing
4. Engaging the Senses in Qualitative Research via Multimodal Coding: Triangulating Transcript, Audio, and Video Data in a Study With Sexual and Gender Minority Youth
5. REAL-TIME FORECASTING OF KEY COKING COAL QUALITY PARAMETERS USING NEURAL NETWORKS AND ARTIFICIAL INTELLIGENCE
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3