KTRICT A KAZE Feature Extraction

Author:

Soni Badal1ORCID,Borah Angana1,Sowgandhi Pidugu Naga Lakshmi1,Sarma Pramod1,Shiferaw Ermyas Fekadu1

Affiliation:

1. National Institute of Technology, Silchar, India

Abstract

To improve the retrieval accuracy in CBIR system means reducing this semantic gap. Reducing semantic is a necessity to build a better, trusted system, since CBIR systems are applied to a lot of fields that require utmost accuracy. Time constraint is also a very important factor since a fast CBIR system leads to a fast completion of different tasks. The aim of the paper is to build a CBIR system that provides high accuracy in lower time complexity and work towards bridging the aforementioned semantic gap. CBIR systems retrieve images that are related to query image (QI) from huge datasets. The traditional CBIR systems include two phases: feature extraction and similarity matching. Here, a technique called KTRICT, a KAZE-feature extraction, tree and random-projection indexing-based CBIR technique, is introduced which incorporates indexing after feature extraction. This reduces the retrieval time by a great extent and also saves memory. Indexing divides a search space into subspaces containing similar images together, thereby decreasing the overall retrieval time.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3