Affiliation:
1. University of New England, Australia
Abstract
The aim of this chapter is to present the multivariate analyses results of the factors that influence students' acceptance and the continuance usage intention of digital learning analytics recommender systems at higher education institutions in Saudi Arabia. Data was collected from 353 Saudi Arabian university students via an online digital survey questionnaire. The research model was then used to examine the hypothesized relationships between user experiences of the digital learning analytics recommender system and their intentions for long-term adoption of the system. The research model was primarily based on the technology acceptance model (TAM) developed by Davis (1989)—the variables ‘perceived usefulness', ‘perceived ease of use', and ‘acceptance', particularly—with ‘continuance usage intention' added as an endogenous construct and with ‘service quality' and ‘user experience' added as external variables.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献