Intrusion Detection System Using Deep Learning

Author:

Meeradevi 1,Sunagar Pramod Chandrashekhar1,Kanavalli Anita1

Affiliation:

1. M.S. Ramaiah Institute of Technology, India

Abstract

With recent advancements in computer network technologies, there has been a growth in the number of security issues in networks. Intrusions like denial of service, exploitation from inside a network, etc. are the most common threat to a network's credibility. The need of the hour is to detect attacks in real time, reduce the impact of the threat, and secure the network. Recent developments in deep learning approaches can be of great assistance in dealing with network interference problems. Deep learning approaches can automatically differentiate between usual and irregular data with high precision and can alert network managers to problems. Deep neural network (DNN) architectures are used with differing numbers of hidden units to solve the limitations of traditional ML models. They also seek to increase predictive accuracy, reduce the rate of false positives, and allow for dynamic changes to the model as new research data is encountered. A thorough comparison of the proposed solution with current models is conducted using different evaluation metrics.

Publisher

IGI Global

Reference17 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reinforcing Cybersecurity with GAN-Enabled Intrusion Detection;International Journal of Advanced Research in Science, Communication and Technology;2024-04-20

2. Intrusion Detection System(IDS) Analysis Using ML;2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon);2022-10-16

3. TrIDS: an intelligent behavioural trust based IDS for smart healthcare system;Cluster Computing;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3