Recommender Systems for E-Learning

Author:

Amanullah Mohamed Abdullah1,Khedher Abdessalem2

Affiliation:

1. Université de Rennes 1, France

2. IMT Atlantique, France

Abstract

The recommender systems are really important in this phase because the users want to be concentrated and to be focused on the domain in which they are interested. There should be minimal deviation in the topics suggested by the recommendation engines. Some of the famous e-learning platforms suggest recommendations based on tags such as highest rated, bestsellers, and so on in various domains. This ultimately makes the users deviate from the domain in which they have to master, and it results in not satisfying the user needs. So, to address this problem, effective recommendation engines will help provide recommendations according to the users by implementing the machine learning techniques such as collaborative filtering and content-based techniques. In this chapter, the authors discuss the recommendation systems, types of recommendation systems, and challenges.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DATA REPRESENTATION MODEL FOR A RECOMMENDATION SYSTEM IN THE EDUCATION FIELD BASED ON FUZZY LOGIC;Cybersecurity: Education, Science, Technique;2023

2. New Recommendation System Based on Students' Engagement Prediction Using CNN to Optimize E-Learning;International Journal of Organizational and Collective Intelligence;2022-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3