Affiliation:
1. University of Manitoba, Canada
Abstract
Big data analytics and mining aims to discover implicit, previously unknown, and potentially useful information and knowledge from big data sets that contain huge volumes of valuable veracious data collected or generated at a high velocity from a wide variety of rich data sources. Among different big data analytic and mining tasks, this chapter focuses on frequent pattern mining. By relying on the MapReduce programming model, researchers only need to specify the “map” and “reduce” functions to discover (organizational) knowledge from (i) big data sets of precise data in a breadth-first manner or depth-first manner and/or from (ii) big data sets of uncertain data. Such a big data analytics process can be sped up by focusing the mining according to the user-specified constraints that express the user interests. The resulting (constrained or unconstrained) frequent patterns mined from big data sets provide users with new insights and a sound understanding of users' patterns. Such (organizational) knowledge is useful is many real-life information science and technology applications.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献