Affiliation:
1. Technical University of Koszalin, Poland
Abstract
The method of Probabilistic Features Combination (PFC) enables interpolation and modeling of high-dimensional N data using features' combinations and different coefficients γ: polynomial, sinusoidal, cosinusoidal, tangent, cotangent, logarithmic, exponential, arc sin, arc cos, arc tan, arc cot or power function. Functions for γ calculations are chosen individually at each data modeling and it is treated as N-dimensional probability distribution function: γ depends on initial requirements and features' specifications. PFC method leads to data interpolation as handwriting or signature identification and image retrieval via discrete set of feature vectors in N-dimensional feature space. So PFC method makes possible the combination of two important problems: interpolation and modeling in a matter of image retrieval or writer identification. Main features of PFC method are: PFC interpolation develops a linear interpolation in multidimensional feature spaces into other functions as N-dimensional probability distribution functions.
Reference27 articles.
1. Characterization of the Marginal Distributions of Markov Processes Used in Dynamic Reliability. Journal of Applied Mathematics and Stochastic Analysis;C.Cocozza-Thivent,2006