Artificial Intelligence Approach for Predicting TOC From Well Logs in Shale Reservoirs

Author:

Rahaman Md. Shokor A.1,Vasant Pandian2ORCID

Affiliation:

1. Universiti Teknologi PETRONAS, Malaysia

2. University of Technology Petronas, Malaysia

Abstract

Total organic carbon (TOC) is the most significant factor for shale oil and gas exploration and development which can be used to evaluate the hydrocarbon generation potential of source rock. However, estimating TOC is a challenge for the geological engineers because direct measurements of core analysis geochemical experiments are time-consuming and costly. Therefore, many AI technique has used for TOC content prediction in the shale reservoir where AI techniques have impacted positively. Having both strength and weakness, some of them can execute quickly and handle high dimensional data while others have limitation for handling the uncertainty, learning difficulties, and unable to deal with high or low dimensional datasets which reminds the “no free lunch” theorem where it has been proven that no technique or system be relevant to all issues in all circumstances. So, investigating the cutting-edge AI techniques is the contribution of this study as the resulting analysis gives top to bottom understanding of the different TOC content prediction strategies.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Total organic carbon (TOC) prediction using machine learning methods based on well logs data;THE 2ND UNIVERSITAS LAMPUNG INTERNATIONAL CONFERENCE ON SCIENCE, TECHNOLOGY, AND ENVIRONMENT (ULICoSTE) 2021;2022

2. Visual Analytics to Build a Machine Learning Model;Advances in Computer and Electrical Engineering;2021

3. Data-Driven Approaches to Predict Thermal Maturity Indices of Organic Matter Using Artificial Neural Networks;ACS Omega;2020-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3