Advances of Quantum Machine Learning

Author:

Chander Bhanu1ORCID

Affiliation:

1. Pondicherry University, India

Abstract

The basic idea of artificial intelligence and machine learning is that machines have the talent to learn from data, previous experience, and perform the work in future consequences. In the era of the digitalized world which holds big data has long-established machine learning methods consistently with requisite high-quality computational resources in numerous useful and realistic tasks. At the same time, quantum machine learning methods work exponentially faster than their counterparts by making use of quantum mechanics. Through taking advantage of quantum effects such as interference or entanglement, quantum computers can proficiently explain selected issues that are supposed to be tough for traditional machines. Quantum computing is unexpectedly related to that of kernel methods in machine learning. Hence, this chapter provides quantum computation, advance of QML techniques, QML kernel space and optimization, and future work of QML.

Publisher

IGI Global

Reference57 articles.

1. Read the fine print.;S.Aaronson;Nature Physics,2015

2. Measurement-based adaptation protocol with quantum reinforcement learning.;F.Albarr’an-Arriagada;Physical Review Letters,2018

3. Reinforcement learning for semi-autonomous approximate quantum eigen solver.;F.Albarr’an-Arriagada;Machine Learning: Science and Technology,2020

4. Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B., & Melko, R. (2016). Quantum Boltzmann machine. https://arxiv.org/abs/1601.02036

5. Quantum machine learning.;J.Biamonte;Nature,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Machine Learning Applications to Address Climate Change;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2023-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3