Univariate and Multivariate Filtering Techniques for Feature Selection and Their Applications in Field of Machine Learning

Author:

Patel Dharmendra Trikamlal1ORCID,Honest Nirali1,Vyas Pranav1ORCID,Patel Atul1

Affiliation:

1. Smt .Chandaben Mohanbhai Patel Institute of Computer Applications, CHARUSAT, India

Abstract

Machine learning's feature selection technique aids in the selection of a subset of original features in order to decrease high-dimensional data space. As per the literature, there are two basic strategies for feature selection: supervised and unsupervised. This chapter will focus on supervised filtering approaches only. Filter, intrinsic, and wrapper are the three types of supervised filtering algorithms. Filtering strategies are the subject of this chapter. The chapter covers the most popular univariate filtering algorithms with examples, advantages and downsides, and R implementation. The chapter compares univariate filtering techniques with number of parameters. The chapter also depicts two popular multivariate filtering techniques: minimum redundancy and maximum relevance (mRMR) and correlation-based feature selection (CFS) using appropriate example and implementation with R programming. Finally, the chapter deals with prominent applications of filtering techniques in context to machine learning.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3