Meta-Heuristic Parameter Optimization for ANN and Real-Time Applications of ANN

Author:

Karegowda Asha Gowda1,G. Devika2ORCID

Affiliation:

1. Siddaganga Institute of Technology, India

2. Government Engineering College, Mandya, India

Abstract

Artificial neural networks (ANN) are often more suitable for classification problems. Even then, training of ANN is a surviving challenge task for large and high dimensional natured search space problems. These hitches are more for applications that involves process of fine tuning of ANN control parameters: weights and bias. There is no single search and optimization method that suits the weights and bias of ANN for all the problems. The traditional heuristic approach fails because of their poorer convergence speed and chances of ending up with local optima. In this connection, the meta-heuristic algorithms prove to provide consistent solution for optimizing ANN training parameters. This chapter will provide critics on both heuristics and meta-heuristic existing literature for training neural networks algorithms, applicability, and reliability on parameter optimization. In addition, the real-time applications of ANN will be presented. Finally, future directions to be explored in the field of ANN are presented which will of potential interest for upcoming researchers.

Publisher

IGI Global

Reference99 articles.

1. A survey of neural network based automated systems for human chromosome classification

2. Predicting the Tensile and Air Permeability Properties of Woven Fabrics Using Artificial Neural Network and Linear Regression Models

3. Comparison among artificial neural network, linear and logarithmic regression models as predictors of stretchable woven fabric tightness.;A.Abou-Nassif;International Journal of Chemtech Research,2018

4. Topology and parameter optimization of ANN using genetic algorithm for application of textiles

5. Bacterial foraging optimization algorithm for neural network learning enhancement.;Int. J. of Innovative Computing,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3